Solution
Given,
Frequency (f1) = 440 Hz
Temperature (T1) = 27 + 273 = 300 K
Frequency (f2) = ?
Temperature (T2) = 0 + 273 = 273 K
For an open organ pipe, we have
\(f_1=\frac{v_1}{2l}\) ------ (i)
and, \(f_2=\frac{v_2}{2l}\) ------ (ii)
Dividing equation (ii) by equation (ii) we get
\(\frac{f_2}{f_1}=\frac{v_2}{2l}\times\frac{2l}{v_1}=\frac{v_2}{v_1}=\sqrt{\frac{T_2}{T_1}}\)
Or, \(f_2=\sqrt{\frac{273}{300}}\times440=419.73\) Hz
Hence, thefrequency at 0°C is 419.73 Hz