Solution
Given,
1st diameter (d1) = 0.9 mm = 0.9 x 10-3 m
2nd diamter (d2) = 0.93 mm = 0.93 x 10-3 m
The fundamental frequency of vibration of wire is given as
\(f=\frac1{ld}\sqrt{\frac T{\pi\rho}}\)
Similarly ,
\(f_1=\frac1{ld_1}\sqrt{\frac T{\pi\rho}}\)
And,
\(f_2=\frac1{ld_2}\sqrt{\frac T{\pi\rho}}\)
Percentage change in frequency =\(=\frac{f_1-f_2}2\times100\%\)
\(=\frac{{\displaystyle\frac1{ld_1}}\sqrt{\displaystyle\frac T{\pi\rho}}-{\displaystyle\frac1{ld_2}}\sqrt{\displaystyle\frac T{\pi\rho}}}{{\displaystyle\frac1{ld_1}}\sqrt{\displaystyle\frac T{\pi\rho}}}\)
\(=\frac{{\displaystyle\frac1{d_1}}-{\displaystyle\frac1{d_2}}}{\displaystyle\frac1{d_1}}\times100\%\)
\(=\frac{d_2-d_1}{d_1d_2}\times d_1\times100\%\)
\(=\frac{0.93-0.9}{0.93}\times100\%\)
= 3.2%
Thus, the required percentage change is 3.2%