Solution
Given,
Grating space (d) = ?,
Number of lines (N) per mm = 400 lines/mm = 400,000 lines/m,
\(d=\frac1N=\frac1{400000}=2.5\times10^{-6}\) m
Wavelength, \(\lambda=6000Å=6000\times10^{-10}\) m
We have,
\(d\sin\left(\theta\right)=n\lambda\)
So for the first order,
\(d\sin\left(\theta_1\right)=\lambda=6000\times10^{-10}\)
\(\Rightarrow\theta_1=13.85^\circ\)
For the maximum number of the diffraction maxima, θ = 90°
∴ \(n=\frac d\lambda=\frac{2.5\times10^{-6}}{6000\times10^{-10}}=4.17\approx4\)
Hence the maximum number of maxima grating obtained is 4.