Site icon Pathshala Nepal

Why did Mendel select pea plant for his experiment ?

Genetics
Online Calculator

Why did Mendel select pea plant for his experiment ?


1 Answer


Mendel selected pea plant for his experiment because  of the following reasons, 

  • pea plant have several distinct varieties having a large number of contrasting characters in pairs such as tall T, dwarf t, round R, and wrinkled r, smooth and constricted pea pods etc . 
  • Pea plant can be cultivated easily and they have short life cycle. 
  • breeding can be controlled easily in pea plants because of the structure of the flower. 
  • The flowers of the pea plant are adequate in size and easy to handle. 

Johann Gregor Mendel (1822–1884), often called the “father of genetics,” was a teacher, lifelong learner, scientist, and man of faith. It would be fair to say that Mendel had a lot of grit: he persevered through difficult circumstances to make some of the most important discoveries in biology.

In 1856, Mendel began a decade-long research project to investigate patterns of inheritance. Although he began his research using mice, he later switched to honeybees and plants, ultimately settling on garden peas as his primary model systemsquared. A model system is an organism that makes it easy for a researcher to investigate a particular scientific question, such as how traits are inherited. By studying a model system, researchers can learn general principles that apply to other, harder-to-study organisms or biological systems, such as humans.
Mendel studied the inheritance of seven different features in peas, including height, flower color, seed color, and seed shape. To do so, he first established pea lines with two different forms of a feature, such as tall vs. short height. He grew these lines for generations until they were pure-breeding (always produced offspring identical to the parent), then bred them to each other and observed how the traits were inherited.
In addition to recording how the plants in each generation looked, Mendel counted the exact number of plants that showed each trait. Strikingly, he found very similar patterns of inheritance for all seven features he studied:
  • One form of a feature, such as tall, always concealed the other form, such as short, in the first generation after the cross. Mendel called the visible form the dominant trait and the hidden form the recessive trait.
  • In the second generation, after plants were allowed to self-fertilize (pollinate themselves), the hidden form of the trait reappeared in a minority of the plants. Specifically, there were always about 3 plants that showed the dominant trait (e.g., tall) for every 1 plant that showed the recessive trait (e.g., short), making a 3, colon, 1 ratio.
  • Mendel also found that the features were inherited independently: one feature, such as plant height, did not influence inheritance of other features, such as flower color or seed shape.
As it turns out, both pea plant height and human height (along with many other characteristics in a wide range of organisms) are controlled by pairs of heritable factors that come in distinctive versions, just as Mendel proposed. In humans, however, there are many different factors (genes) that contribute fractionally to height and vary among individuals. This makes it difficult to see the contribution of any one factor and produces inheritance patterns that can resemble blending. In Mendel's experiments, in contrast, there was just one factor that differed between the tall and short pea plants, allowing Mendel to clearly see the underlying pattern of inheritance.
In 1868, Mendel became abbot of his monastery and largely set aside his scientific pursuits in favor of his pastoral duties. He was not recognized for his extraordinary scientific contributions during his lifetime. In fact, it was not until around 1900 that his work was rediscovered, reproduced, and revitalized. Its rediscoverers were biologists on the brink of discovering the chromosomal basis of heredity – that is, about to realize that Mendel's “heritable factors” were carried on chromosomes.
Mendel carried out his key experiments using the garden pea, Pisum sativum, as a model system. Pea plants make a convenient system for studies of inheritance, and they are still studied by some geneticists today.
Useful features of peas include their rapid life cycle and the production of lots and lots of seeds. Pea plants also typically self-fertilize, meaning that the same plant makes both the sperm and the egg that come together in fertilization. Mendel took advantage of this property to produce true-breeding pea lines: he self-fertilized and selected peas for many generations until he got lines that consistently made offspring identical to the parent (e.g., always short).
Pea plants are also easy to cross, or mate in a controlled way. This is done by transferring pollen from the anthers (male parts) of a pea plant of one variety to the carpel (female part) of a mature pea plant of a different variety. To prevent the receiving plant from self-fertilizing, Mendel painstakingly removed all of the immature anthers from the plant’s flowers before the cross.
Topics from Biology
Related Questions