Follow these three steps in order to write the dimensional formula of any given physical quantity.
The dimensional formula for above given physical quantities are as follows:
- Velocity :
We have, Velocity (v) = \(velocity\left(V\right)=\frac{Displacement\left(d\right)}{time\left(t\right)}\)
So, Dimensional formula of velocity is : \(\frac{\left[L\right]}{\left[T\right]}=\left[LT^{-1}\right]=\left[M^0LT^{-1}\right]\)
- Linear Momentum :
We have, Linear momentum (p) = \(mass\left(m\right)\cdot velocity\left(v\right)=m\cdot v=m\cdot\frac dt\)
So, Dimensional formula of linear momentum is : \(\left[M\right]\cdot\frac{\left[L\right]}{\left[T\right]}=\left[MLT^{-1}\right]\)
- Work done :
We have, \(Word\;done\left(W\right)=Force\left(F\right)\cdot Displacement\left(S\right)\)
\(=F\cdot S=\left(ma\right)\cdot S=\left(m\cdot\frac vt\right)\cdot S=\left(m\cdot\frac s{t\times t}\right)\cdot S=m\cdot\frac{s^2}{t^2}\)
So, dimensional formula of work done is: \(\left[M\right]\cdot\frac{\left[L^2\right]}{\left[T^2\right]}=\left[ML^2T^{-2}\right]\) - Gravitational Constant (G) :
We have, Gravitational Force \(F=G\frac{m_1\cdot m_2}{r^2}\)
Or, \(G=\frac{F\cdot r^2}{m_1\cdot m_2}\)
Now, the Dimensional formula of force (F) is [ M L T-2 ]
The dimensional formula of the radius is [L].
The dimensional formula of mass is [M].
So, the dimensional formula of Gravitational Constant (G) is : \(\frac{\left[MLT^2\right]\cdot\left[L^2\right]}{\left[M^2\right]}=\left[M^{-1}L^3T^{-2}\right]\)
- Torque :
We have, \(Torque\left(\Tau\right)=Force(F)\left(\right)\cdot Perpendicular\;distance\left(d\right)\)
Now, the dimensional formula of force (F) is [ M L T-2 ]
the dimensional formula of distance (s) = [L]
Hence, the dimensional formula of Torque is : \(\left[MLT^{-2}\right]\cdot\left[L\right]=\left[ML^2T^2\right]\)
- Frequency :
We have, frequency \(f=\frac1t\)
So, the dimensional formula of frequency is : \(\frac1{\left[T\right]}=\left[M^0L^0T^{-1}\right]\)
- Angle :
We have, Angle \(\left(\theta\right)=\frac{Arc\;Length}{Radius}\)
So, the Dimensional formula of angle is \(\frac{\left[L\right]}{\left[L\right]}=\left[L^0\right]=\left[M^0L^0T^0\right]\) (dimensionless)
Thus, Angle is a dimensionless physical quantity.