Solution
Given,
y1 = a1 sin (ωt),
and, y2 = a2 sin(ωt)
Let I1 and I2 be their intensities, then
\(I_1\propto a_1^2\),
\(I_2\propto a_2^2\)
Or, \(\frac{I_1}{I_2}=\left(\frac{a_1}{a_2}\right)^2\)
When, I1 = 2I2 we get,
\(\frac{2I_2}{I_2}=\left(\frac{a_1}{a_2}\right)^2\)
Or, \(2=\left(\frac{a_1}{a_2}\right)^2\)
Or, \(\frac{a_1}{a_2}=\sqrt2\)
i.e., \(\frac{a_1}{a_2}=\sqrt2:1\)
Thus, the ratio of these amplitudes would be √2 : 1