Solution:
Here, given equation is, \(v=\sqrt{\frac R{2GM}}\)
Dimension of LHS
= \(\left[LT^{-1}\right]\)
Dimension of RHS
= \(\left(\frac{\left[L\right]}{2\left[M\right]\left[M^1L^3T^2\right]}\right)^\frac12\)
= \(\frac1{\sqrt2}\left[L^{-2}T^2\right]^\frac12\)
= \(\frac1{\sqrt2}\left[L^{-1}T\right]\)
= \(\left[L^{-1}T\right]\)
Here, \(\frac1{\sqrt2}\) is dimensionless constant.
So, Dimension of LHS ≠ Dimension of RHS
Thus, Given equation is incorrect.