Solution:
Before we proceed integration we first check if the function is odd.
Let, \(f(x)=\sin^3x\cos^2x\)
Put x = -x
\(f(-x)=\sin^3(-x)\cos^2(-x)\)
= -\(\sin^3x\cos^2x\)
= f(x)
This confirms that the function involved in integration is odd. Hence
\(\int_{-1}^1\sin^3x\cos^2x\operatorname dx\) = 0